
qualpay-python Documentation
Release 1.0.0

Derek Payton

July 13, 2015

Contents

1 Getting started 3
1.1 Installation . 3
1.2 Authentication . 3
1.3 Using the test gateway . 3

2 The payment gateway 5
2.1 Authorization . 5
2.2 Capture . 5
2.3 Sale . 5

3 The card object 7
3.1 Gateway helpers . 7

4 Contributing 9
4.1 Reporting bugs . 9
4.2 Writing code . 9
4.3 Testing . 10
4.4 Submit a pull request . 11

5 Reference 13
5.1 Payment gateway functions . 13
5.2 qualpay.Card . 14
5.3 qualpay.PaymentGateway . 14
5.4 Exceptions . 15

6 Indices and tables 17

i

ii

qualpay-python Documentation, Release 1.0.0

Python bindings for Qualpay.

Author Derek Payton

Version 1.0.0

License MIT

Source github.com/dmpayton/qualpay-python

Docs qualpay-python.readthedocs.org

Contents:

Contents 1

https://www.python.org/
https://www.qualpay.com/
http://dmpayton.com
https://github.com/dmpayton/qualpay-python/blob/master/LICENSE
https://github.com/dmpayton/qualpay-python
https://qualpay-python.readthedocs.org/

qualpay-python Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting started

1.1 Installation

$ pip install qualpay

1.2 Authentication

import qualpay

qualpay.merchant_id = '<your merchant id>'
qualpay.security_key = '<your security key>'

1.3 Using the test gateway

To use the test payment gateway (such as during development), set qualpay.base_endpoint to the correct URL:

qualpay.base_endpoint = 'https://api-test.qualpay.com'

3

qualpay-python Documentation, Release 1.0.0

4 Chapter 1. Getting started

CHAPTER 2

The payment gateway

2.1 Authorization

qualpay.authorize(
card_number='4111111111111111'
exp_date='0120',
cvv2='111',
tran_amt=10

)

2.2 Capture

qualpay.capture(
pg_id='8af556ae480811e484b20c4de99f0aaf'

)

2.3 Sale

qualpay.sale(
card_number='4111111111111111'
exp_date='0120',
cvv2='111',
tran_amt=10

)

5

qualpay-python Documentation, Release 1.0.0

6 Chapter 2. The payment gateway

CHAPTER 3

The card object

The qualpay.Card object allows you to validate and charge credit cards. It’s essentially a utility class that wraps
the qualpay.PaymentGateway and provides additional helpers for validating card information before sending it
off to the API.

>>> card = qualpay.Card(
number='4111 1111 1111 1111',
exp_month=1,
exp_year=2020,
cvv2='111'

)
>>> card.is_expired
False
>>> card.is_valid
True
>>> card.authorize(1)
{'rcode': '000', 'rmsg': 'Approved T63362', 'pg_id': '8af556ae480811e484b20c4de99f0aaf'}

3.1 Gateway helpers

3.1.1 Authorization

Create an authorization of $10.00:

>>> card.authorize(10)
{

'rcode': '000',
'rmsg': 'Approved T63362',
'pg_id': '8af556ae480811e484b20c4de99f0aaf'

}

3.1.2 Sale

Immediately charge $10.00:

>>> card.sale(10)
{

'rcode': '000',
'rmsg': 'Approved T42926',

7

qualpay-python Documentation, Release 1.0.0

'pg_id': 'daab5fff480811e484b20c4de99f0aaf'
}

3.1.3 Verify

Verify the card information:

>>> card.verify()
{

'rcode': '085',
'rmsg': 'No reason to decline T19093',
'pg_id': '299cf38f29b111e5b1460a12fcf6f1a3',
'auth_cvv2_result': 'M',
'auth_code': 'T19093'

}

3.1.4 Tokenize

Tokenize the card:

>>> card.tokenize()
{

'rcode': '000',
'rmsg': 'Token request complete',
'pg_id': '88a4099c480711e4ac850c4de99f0aaf',
'card_id': '88b4363 d480711e4ac850c4de99f0aaf'

}

8 Chapter 3. The card object

CHAPTER 4

Contributing

4.1 Reporting bugs

Perhaps the easiest way to contribute to qualpay-python is to report any bugs you run into on the github issue tracker.

Useful bug reports are ones that get bugs fixed. A useful bug report normally has two qualities:

1. Reproducible. If your bug is not reproducible it will never get fixed. You should clearly mention the steps to
reproduce the bug. Do not assume or skip any reproducing step. Described the issue, step-by-step, so that it is
easy to reproduce and fix.

2. Specific. Do not write a essay about the problem. Be Specific and to the point. Try to summarize the problem
in minimum words yet in effective way. Do not combine multiple problems even they seem to be similar. Write
different reports for each problem.

4.2 Writing code

Our workflow is based on Vincent Driessen’s successful git branching model:

• The master branch is our current release

• The develop branch is what all pull requests should be based against

• Feature branches are where new features, both major and minor, should be developed.

9

https://github.com/dmpayton/qualpay-python/issues
http://nvie.com/posts/a-successful-git-branching-model/

qualpay-python Documentation, Release 1.0.0

git-flow is a git plugin that helps facilitate this branching strategy. It’s not required, but can help make things a bit
easier to manage. There is also a good write up on using git-flow.

We also request that git commit messages follow the standard format.

4.3 Testing

Continuous integration provided by Travis CI.

10 Chapter 4. Contributing

https://github.com/nvie/gitflow
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://travis-ci.org/

qualpay-python Documentation, Release 1.0.0

4.3.1 Test requirements

See requirements.txt:

pytest
pytest-cov
pytest-pep8
pytest-pythonpath
requests
responses
sphinx
sphinxcontrib-seqdiag
tox

4.3.2 Running the tests

Once your requirements are installed, the unit tests can be run with:

$ py.test tests/ --cov qualpay --cov-report term-missing --pep8 qualpay

...

==================== 15 passed in 0.15 seconds ====================

For testing against different Python versions, we use Tox.

$ tox

...

_______________ summary _______________
py27: commands succeeded
py34: commands succeeded
congratulations :)

4.4 Submit a pull request

You’ve done your hacking and are ready to submit your patch. Great! Now it’s time to submit a pull request to our
issue tracker on Github.

Important: Pull requests are not considered complete until they include all of the following:

• Code that conforms to PEP8.

• Unit tests that pass locally and in our CI environment.

• Documentation updates on an as needed basis.

4.4. Submit a pull request 11

http://tox.readthedocs.org/
https://help.github.com/articles/using-pull-requests
https://github.com/dmpayton/qualpay-python/issues

qualpay-python Documentation, Release 1.0.0

12 Chapter 4. Contributing

CHAPTER 5

Reference

5.1 Payment gateway functions

qualpay.authorize(**kwargs)
An authorization message is used to send cardholder data to the issuing bank for approval. An approved transac-
tion will continue to be open until it expires or a capture message is received. Authorizations are automatically
voided if they are not captured within 28 days, although most issuing banks will release the hold after 24 hours
in retail environments or 7 days in card not present environments.

qualpay.verify(**kwargs)
A verify message is used to send cardholder data to the issuing bank for validation. A verify message will return
success if the cardholder information was verified by the issuer. If the AVS or CVV2 field is included in the
message, then the AVS or CVV2 result code will be returned in the response message.

qualpay.capture(**kwargs)
A capture message is used to capture a previously authorized transaction using the payment gateway identifier
returned by the authorization message. A capture may be completed for any amount up to the authorized amount.

qualpay.sale(**kwargs)
A sale message is used to perform the function of an authorization and a capture in a single message. This
message is used in retail and card not present environments where no physical goods are being shipped.

qualpay.void(**kwargs)
A void message is used to void a previously authorized transaction. Authorizations can be voided at any time.
Captured transactions can be voided until the batch is closed. The batch close time is configurable and by default
is 11 PM Eastern Time.

qualpay.refund(**kwargs)
A refund message is used to issue a partial or full refund of a previously captured transaction using the payment
gateway identifier. Multiple refunds are allowed per captured transaction provided that the sum of all refunds
does not exceed the original captured transaction amount.

Authorizations that have not been captured are not eligible for refund.

qualpay.credit(**kwargs)
A credit message is used to issue a non-referenced credit to a cardholder. A nonreferenced credit requires the
cardholder data be provided in the message. The credit message is enabled during the first 30 days of production
activity.

After 30 days, the credit message is disabled to prevent fraudulent use of the message. If a credit is necessary
after 30 days, it is recommended that the merchant make use of the Qualpay web based business platform to
issue the credit. If the merchant requires non-referenced credits to be enabled on the payment gateway beyond
30 days they can request this by contacting Qualpay.

13

qualpay-python Documentation, Release 1.0.0

qualpay.tokenize(**kwargs)
A tokenization message is used to securely store cardholder data on the Qualpay system. Once stored, a unique
card identifier is returned for use in future transactions. Optionally, tokenization can be requested in an autho-
rization, verification or sale message by sending the tokenize field set to “true”.

qualpay.force(**kwargs)
A force message is used to force a declined transaction into the system. This would occur when the online
authorization was declined and the merchant received an authorization from a voice or automated response
(ARU) system. The required fields are the same as a sale or authorization message with the following exceptions:
the cardholder expiration date (exp_date) is not required, and the 6-character authorization code received from
the issuer (auth_code) is required.

5.2 qualpay.Card

class qualpay.Card(number, exp_month, exp_year, cvv2)
A credit card that may be valid or invalid.

brand
Returns the brand of the card, if applicable, else an “unknown” brand.

is_expired
Returns whether or not the card is expired.

is_luhn_valid
Returns whether or not the card’s number validates against the luhn algorithm, automatically returning
False on an empty value.

is_valid
Returns whether or not the card is a valid card for making payments.

mask
Returns the credit card number with each of the number’s digits but the first six and the last four digits
replaced by an X, formatted the way they appear on their respective brands’ cards.

5.3 qualpay.PaymentGateway

class qualpay.PaymentGateway(merchant_id=None, security_key=None, base_endpoint=None)

authorize(**kwargs)
An authorization message is used to send cardholder data to the issuing bank for approval. An approved
transaction will continue to be open until it expires or a capture message is received. Authorizations are
automatically voided if they are not captured within 28 days, although most issuing banks will release the
hold after 24 hours in retail environments or 7 days in card not present environments.

capture(pg_id, **kwargs)
A capture message is used to capture a previously authorized transaction using the payment gateway iden-
tifier returned by the authorization message. A capture may be completed for any amount up to the autho-
rized amount.

credit(**kwargs)
A credit message is used to issue a non-referenced credit to a cardholder. A nonreferenced credit requires
the cardholder data be provided in the message. The credit message is enabled during the first 30 days of
production activity.

14 Chapter 5. Reference

qualpay-python Documentation, Release 1.0.0

After 30 days, the credit message is disabled to prevent fraudulent use of the message. If a credit is
necessary after 30 days, it is recommended that the merchant make use of the Qualpay web based business
platform to issue the credit. If the merchant requires non-referenced credits to be enabled on the payment
gateway beyond 30 days they can request this by contacting Qualpay.

force(**kwargs)
A force message is used to force a declined transaction into the system. This would occur when the online
authorization was declined and the merchant received an authorization from a voice or automated response
(ARU) system. The required fields are the same as a sale or authorization message with the following
exceptions: the cardholder expiration date (exp_date) is not required, and the 6-character authorization
code received from the issuer (auth_code) is required.

refund(pg_id, **kwargs)
A refund message is used to issue a partial or full refund of a previously captured transaction using the
payment gateway identifier. Multiple refunds are allowed per captured transaction provided that the sum
of all refunds does not exceed the original captured transaction amount.

Authorizations that have not been captured are not eligible for refund.

sale(**kwargs)
A sale message is used to perform the function of an authorization and a capture in a single message. This
message is used in retail and card not present environments where no physical goods are being shipped.

tokenize(**kwargs)
A tokenization message is used to securely store cardholder data on the Qualpay system. Once stored, a
unique card identifier is returned for use in future transactions. Optionally, tokenization can be requested
in an authorization, verification or sale message by sending the tokenize field set to “true”.

verify(**kwargs)
A verify message is used to send cardholder data to the issuing bank for validation. A verify message
will return success if the cardholder information was verified by the issuer. If the AVS or CVV2 field is
included in the message, then the AVS or CVV2 result code will be returned in the response message.

void(pg_id, **kwargs)
A void message is used to void a previously authorized transaction. Authorizations can be voided at any
time. Captured transactions can be voided until the batch is closed. The batch close time is configurable
and by default is 11 PM Eastern Time.

5.4 Exceptions

exception qualpay.APIError
Base exception from which all other Qualpay exceptions inherit.

exception qualpay.GatewayError(code, response)
Raised when the payment gateway returns a non-success code.

exception qualpay.HttpError(code, response)
Raised when the payment gateway returns a non-200 response.

Payment Gateway Specification v1.2

5.4. Exceptions 15

qualpay-python Documentation, Release 1.0.0

16 Chapter 5. Reference

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

qualpay-python Documentation, Release 1.0.0

18 Chapter 6. Indices and tables

Index

A
APIError, 15
authorize() (in module qualpay), 13
authorize() (qualpay.PaymentGateway method), 14

B
brand (qualpay.Card attribute), 14

C
capture() (in module qualpay), 13
capture() (qualpay.PaymentGateway method), 14
Card (class in qualpay), 14
credit() (in module qualpay), 13
credit() (qualpay.PaymentGateway method), 14

F
force() (in module qualpay), 14
force() (qualpay.PaymentGateway method), 15

G
GatewayError, 15

H
HttpError, 15

I
is_expired (qualpay.Card attribute), 14
is_luhn_valid (qualpay.Card attribute), 14
is_valid (qualpay.Card attribute), 14

M
mask (qualpay.Card attribute), 14

P
PaymentGateway (class in qualpay), 14

R
refund() (in module qualpay), 13
refund() (qualpay.PaymentGateway method), 15

S
sale() (in module qualpay), 13
sale() (qualpay.PaymentGateway method), 15

T
tokenize() (in module qualpay), 13
tokenize() (qualpay.PaymentGateway method), 15

V
verify() (in module qualpay), 13
verify() (qualpay.PaymentGateway method), 15
void() (in module qualpay), 13
void() (qualpay.PaymentGateway method), 15

19

	Getting started
	Installation
	Authentication
	Using the test gateway

	The payment gateway
	Authorization
	Capture
	Sale

	The card object
	Gateway helpers

	Contributing
	Reporting bugs
	Writing code
	Testing
	Submit a pull request

	Reference
	Payment gateway functions
	qualpay.Card
	qualpay.PaymentGateway
	Exceptions

	Indices and tables

